

Deltares

Radar rainfall nowcasting for short-term hydrological forecasting

Ruben Imhoff

Maarten Smoorenburg

Klaas-Jan van Heeringen

4th workshop Dutch-German-French knowledge exchange

Table of contents

- A short introduction to nowcasting
- How skillful is nowcasting for rainfall and hydrological predictability?
- Operational implementations and possible applications
- Towards ensemble nowcasts blended with Numerical Weather Prediction models
- Open challenges

The need for better short-term rainfall forecasts

- Need for accurate and timely short-term rainfall forecasts to ensure early flood warning
- Numerical Weather Prediction (NWP) often not sufficient on the short term:
 - Update frequency of issued forecasts is too low, especially for convective events
 - Events are forecast, but not at the right location

Torrential rains sweep away houses and roads, and 21 people are reported missing

The Guardian, Oct 4, 2020

A tool you probably use every day!

Source: https://www.dwd.de/DE/leistungen/radarbild_film/radarbild_film.html

• Step 1: derive the motion of the rainfall fields

Source: Pulkkinen et al., Geosci. Model. Dev., 2019

Deltares

A short introduction to nowcasting

• (Possible) step 2: what can we do with the development of the rainfall field over time?

STEPS (Short-Term Ensemble Prediction System): Decompose the precipitation field into a multiplicative cascade, each level denoting a different spatial scale and treating each level differently

Towards an ensemble:

- Temporal evolution of rainfall field with 2nd order auto-regressive process.
- Perturbations with correlated Gaussian random fields to take into account uncertainty.

Deltares

6

A short introduction to nowcasting – The nowcast chain

14 March 2021 18:35 UTC

Observations

Nowcast

15 March 2021 00:45 UTC

Observations

Nowcast

How skillful is nowcasting for rainfall and hydrological predictability?

What skill can we expect?

What skill can we expect? – Some conclusions based on a study with >1500 rainfall events

Skill was found to depend on:

1) **Event type and duration:** Increasing for longer events, Max. skilfull lead times range from 25 min (1-h events) to 116 min (24-h)

2) Season: Decreasing skill towards summer

3) Location: Increasing in the downwind direction

4) Catchment size: Increasing with larger catchment size

Consistency of the discharge peak forecast

Operational implementations and possible applications

Operational Delft-FEWS system for the Regge and Dinkel, the Netherlands

Loas

Application in Delft-FEWS by Environment Agency, UK

Regional flood warnings in Switzerland based on nowcasting

Warning level	Frequency distribution of the ensemble
2	3% > HQ100
2	10% > HQ10 und 30% > HQ2
2	10% > HQ5 und 40% > HQ2
2	25% > HQ5 und 50% > HQ2
2	60% > HQ2
3	15% > HQ100
3	50% > HQ10 und 75% > HQ5
3	25% > HQ30 und 100% > HQ5
3	75% > HQ10
4	50% > HQ30 und 75% > HQ20
4	25% > HQ100 und 100% > HQ20
4	75% > HQ30
5	50% > HQ100 und 75%
5	25% > HQ200 und 100% > HQ65
5	75% > HQ100

Towards better rainfall and hydrological forecasts up to 6 hours in advance

Blending ensemble nowcasts with Numerical Weather Prediction models

A study together with Royal Meteorological Institute, Belgium and Bureau of Meteorology, Australia

Why we have to try to get the best out of both forecasting methods (nowcasting and NWP)

Deltares

Blending with NWP

Linear blending: the easiest implementation

Blending with NWP

STEPS blending in the open-source pySTEPS package

- Blending per cascade level (spatial scale)
- Blending weights based on initial skill of radar rainfall nowcast and NWP at issue time forecast

Deltares

Blending in the open-source pySTEPS package: planning

Implementation of linear blending

Implementation of original STEPS blending scheme

Utilities for operational implementation

Blending multiple NWP models with the nowcast

Working – Final checks in progress

Lagged ensembles

Fix edge effects at radar domain boundaries

Possibly: relocate wrongly located NWP rainfall fields prior to blending

D

Finalization end of 2021; followed by a test case and a paper

Blending with NWP

Nowcasting products by DWD

- KONRAD (KONvektive Entwicklung in RADarprodukten): a nowcasting system that is especially suited for thunderstorms
- Recent blending product SINFONY (Seamless INtegrated FOrecastiNg sYstem)

Open challenges

- Ensemble nowcasting for impact-based decision making
 - How do we go from (ensemble) nowcasts to impact?
 - How to deal with the probabilities in the ensemble?
- Where to put thresholds and warning levels in the early warning system?
- Real-time water level control based on nowcasts
- Biases in the radar composite
- Would it be useful for people on site during (potential) flood conditions to get direct and frequent updates of forecast rainfall, discharge and water levels? Who should provide this information?

Contact

Ruben.Imhoff@deltares.nl

Thanks to Lesley de Cruz (RMI, Belgium), Wout Dewettinck (Univ. Gent, Belgium) and Carlos Velasco (BoM, Australia) for our collaboration on blending nowcasts with NWP

Blending can improve the forecast skill

Extra info

Extra info

Extra info

