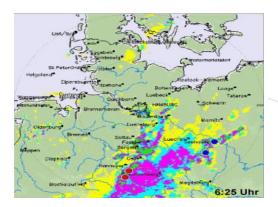
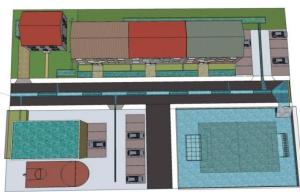


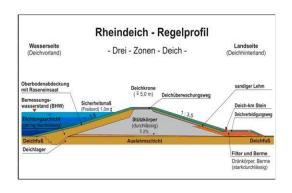
Mobile Flood Protection Systems - research and practical applications

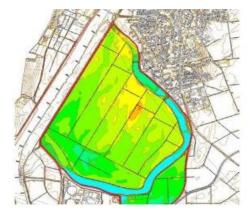
Peter Fröhle Institut für Wasserbau Technische Universität Hamburg





Wasserbau: Hydrologie und Hochwasserschutz

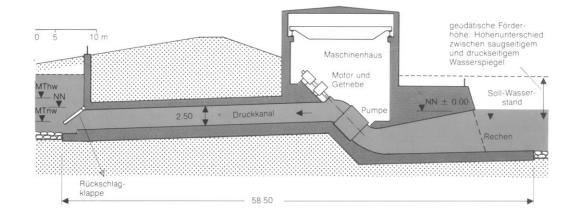

Hochwasserschutz / Flash Floods



Hochwasserschutz / Deiche, Polder und Rückhaltebecken

Entwässerung des Hinterlands

Urbane Gebiete

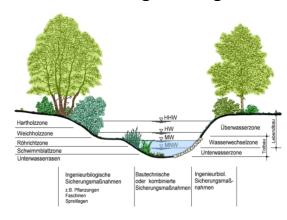


Ländliche Gebiete

Küstenschutz

Hochwasserschutz

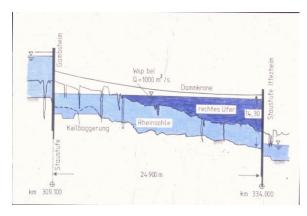
Schutz sandiger Küsten



Flussbau und Unterhaltung

Flussbau und -regelung: Uferschutz, Leitdämme, Renaturierung, NW-, MW- und HW-Regulierung

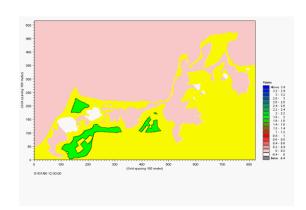
Unterhaltung: Inspektion, Mahd, Säuberung, etc.



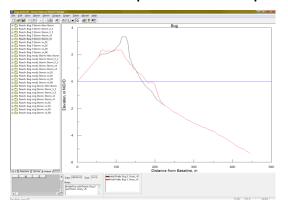
Verkehrswasserbau

Binnenverkehrswasserbau: Binnenwasserstraßen, Schleusen und Schiffshebewerke, Binnenhäfen

Seeverkehrswasserbau: Seeverkehrsstraßen, Seehäfen, Umschlagseinrichtungen und andere Häfen



Messungen in der Natur, numerische Modelle und hydraulische Modell


Hydrodynamik

Sediment Transport und Morphodynamik

Laborarbeiten und Messungen in der Natur

Forschungsboot

Testbecken Wilhelmsburg

Mobile Flodd Protection

Why mobile flood protection?

- Technical aspects
- administrative aspects
- Aestetic aspects
- Aspects of cultural heritage and munument conservation
- Necessary funds for investment and maintenance and repairs
- Possibly the "smart solution"

EU-Projekt SMARTest

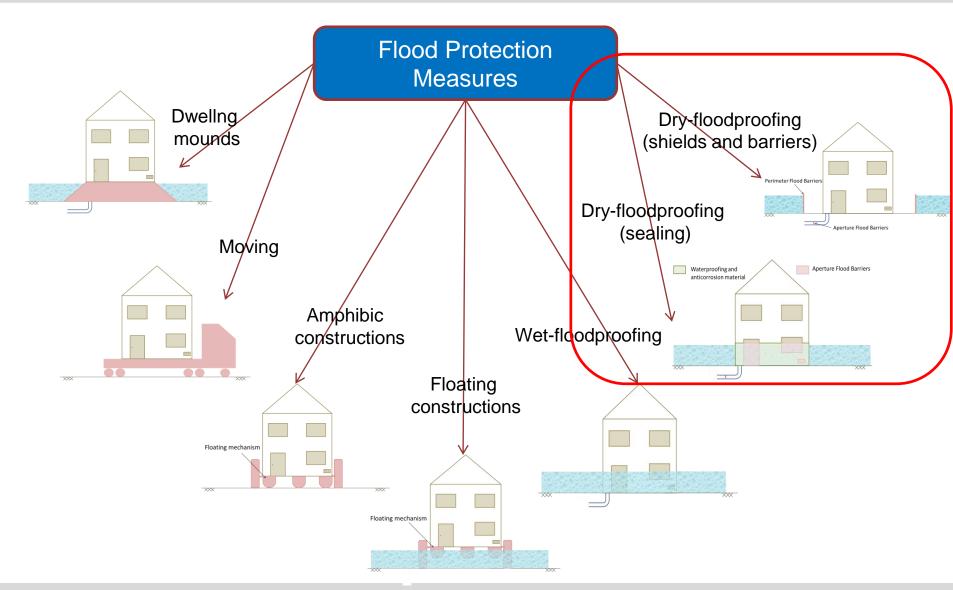
Project lifetime: 2010-2013 10 EU-Projekt Partner

Goal: Development of technologies, systems and tools for the improvement of the flood resilience of urban areas

Technologies

Systems

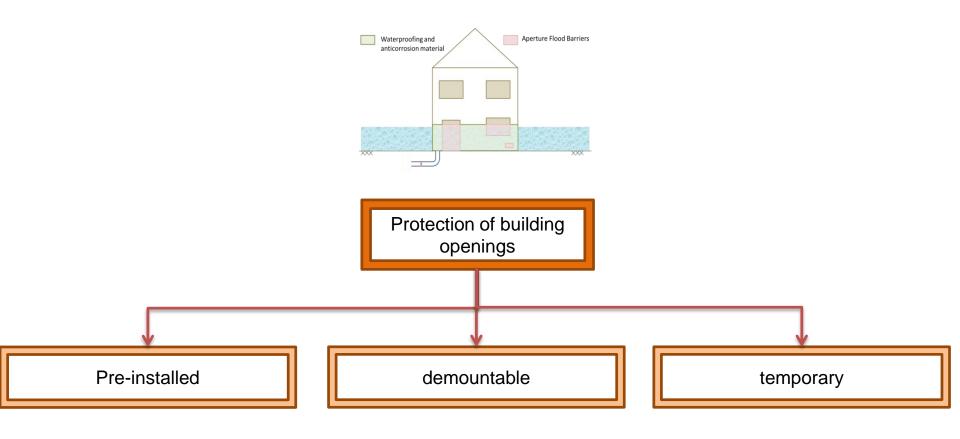
Tools



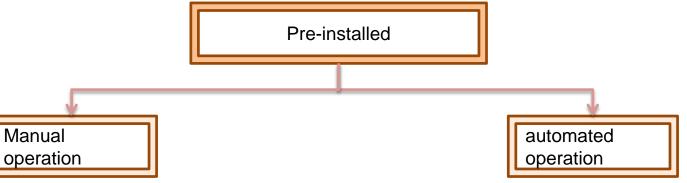
Mobile Flood Protection

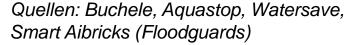
- Measures and technologies
- Investigations in the hydraulic lab
- Standardization of tests

WASSERBAU River and Coastal Engineering


Flood protection technologies

- Protection of building openings
- Shielding technologies and barriers (mobile flood protection walls)
- Sealing technologies


Mobile Flood Protection: Protection of construction openings

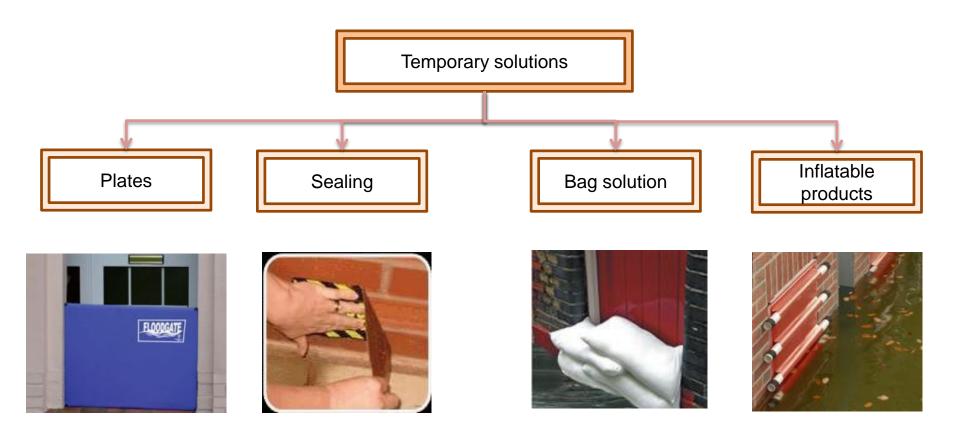


Mobile Flood Protection: Protection of building openings

Manual

Mobile Flood Protection: Protection of building openings

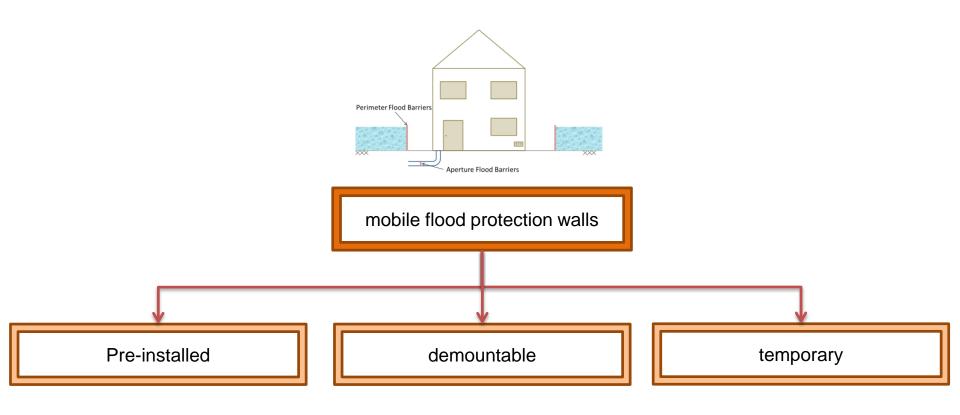
De-mountable



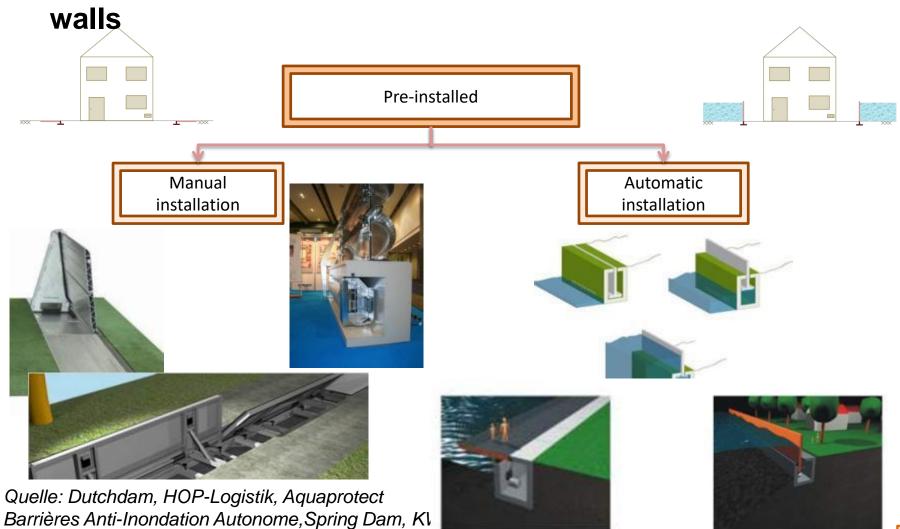
Quellen: FloodArk, Floodtite, Floodshield, IBS

Mobile Flood Protection: Protection of building openings

Quellen: FloodGate, Floodsentry, Aqua-sac, Howasu

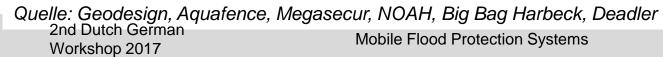

Flood protection technologies

- Protection of building openings
- Shielding technologies and barriers (mobile flood protection walls)
- Sealing technologies


Shielding technologies and barriers: mobile flood protection walls

Shielding technologies and barriers: mobile flood protection

Shielding technologies and barriers: mobile flood protection walls



Shielding technologies and barriers: mobile flood protection walls

Flood protection technologies

- Protection of building openings
- Shielding technologies and barriers (mobile flood protection walls)
- Sealing technologies

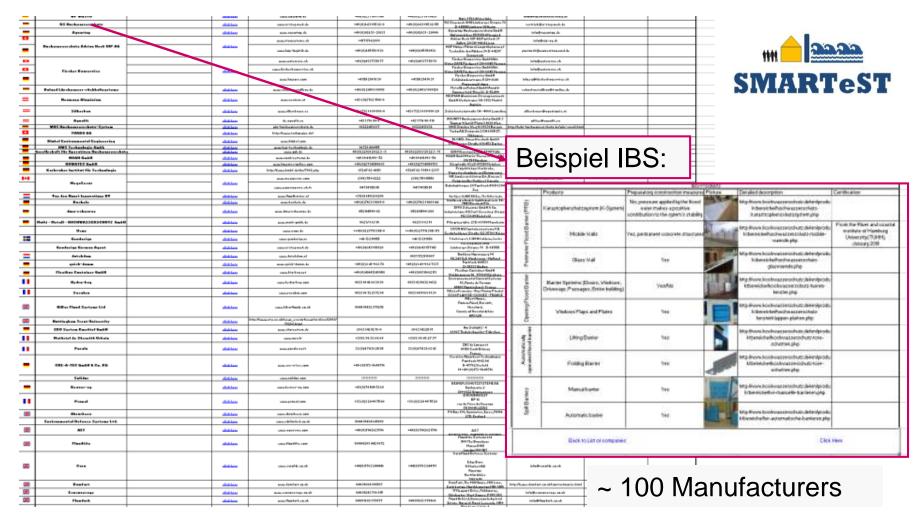
Sealing technologies

Permanently installed solutions

Nobody would ever guess that this FloodProof™ door is totally protected from flood. 24 hours a day, 7 days a week!

Water tight material

Non corroding material



WASSERBAU River and Coastal Engineering

TUHH Data Base:

Model tests in the hydraulic lab

Aims

- Co-operation with manufacturers for the improvement of the products
- Development of a test procedure and test protocol for the objective assessment of the functionality of the products
- Analyses for the development of a standardised test procedure and test protocol

Within the framework of the SMARTeST project 5 partners tested 25 products:

- TUHH (Germany): Perimeter Technologies & Aperture Technologies
- CSTB (France): Aperture Technologies
- IOER (Germany): Building Technologies
- > BRE (UK) Building Technologies
- UPM (Spain) Building Technologies

Analyses in the hydraulic lab

Pre-installed mobile flood protection walls

Spring Dam

AquaWand

Demountable mobile flood protection walls

AQUASTOP Damm

IBS mobile wall

Aquafence

Temporary mobile flood protection walls (constructions)

Sandsack

DAEDLER

Analyses in the hydraulic lab

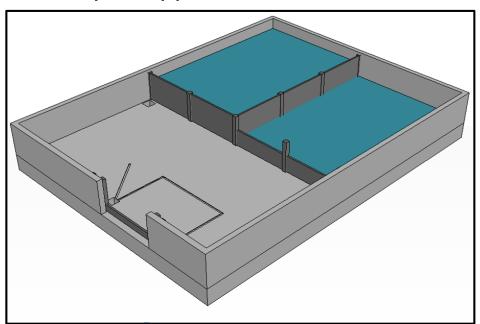
Protection of building openings

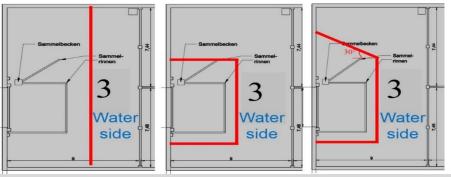
Aquastop system – Tür, Fenster und Kellerfenster automatically Operated barriers

Flood barrier Collados/sarl PARTENAIRES Demountable aperture flood barrier

2nd Dutch German Workshop 2017

sealing technologies for buildings


Technitherm



TUHH – test facility for mobile flood protection

- ➤ Basin ca. 15m x 20m max. water depth d=1,80m
- Scale 1:1
 Length of mobile protection up to approx. 25m

Standardisierte Prüfverfahren

Prüfbereich	Prüfgrößen	Prüfmethode	Prüfkriterien
Qualitätskontrolle	Technische Unterlagen	Analyse und Bewertung der Installationsunterlagen und technischen Dokumente	Vollständigkeit, Lesbarkeit, Verständlichkeit, Einfachheit und einheitliche Terminologie
	Physikalische und statische Konstruktionseigensch aften	Analyse und Bewertung geprüfter Systemstatiken	Rechnerischer Widerstand gegenüber äußerer Lasteinwirkung
	Einfachheit im Aufbau	Vollständiger Auf- und Abbau eines Systems über einen längeren Abschnitt (mindestens zwei Segmente aus Wand und Stützen)	Notwendige Qualifikation und Anzahl der für Auf- und Abbau erforderlichen Personen Zeit für Auf- und Abbau Notwendige Ausrüstung Einfachheit Montage Anforderungen an Gründung
	Beständigkeit und Dauerhaftigkeit	Wiederholter Auf- und Abbau eines vollständigen Wandabschnittes (bis 100	Verschleiß, Beschädigung, Bruch und Betriebseinschränkungen einzelner Komponenten
Belastungs- nachweise	Hydrostatischer Druck	Langsames Befüllen bis zum Erreichen des Auslegungswasserstandes	Schäden und/oder Bruch einzelner Komponenten
	Hydrodynamische Belastung	Überströmung des Systems Längs- und Direktanströmung des Systems	elastische und dauerhafte Verformung von Stützen und Wandprofilen
	Dynamische Belastung infolge Treibgut	Schräger Aufprall eines Baumstamm- Dummies Mobile Flood Protection Systems	Sickerrate FM Approvals 31
Workshop 2	2017		Member of the FM Global Group British Standards

Determination of a test catalogue at TUHH

- Installation tests
 - Experienced teams (Manufacturer)
 - TUHH Teams (after instruction)
 - Long-term use
- Water / leak tightness
 - Hydrostatic tests
 - Hydrodynamic tests
 - Local approach flows
 - Longitudinal flows
 - Permanent leak-tightness
 - Overflow
- Driftwood
 - Selected impulse loads using different logs and drift velocities
- Additional specific tests after consultation with the manufacturer / client
 => goal development of technology

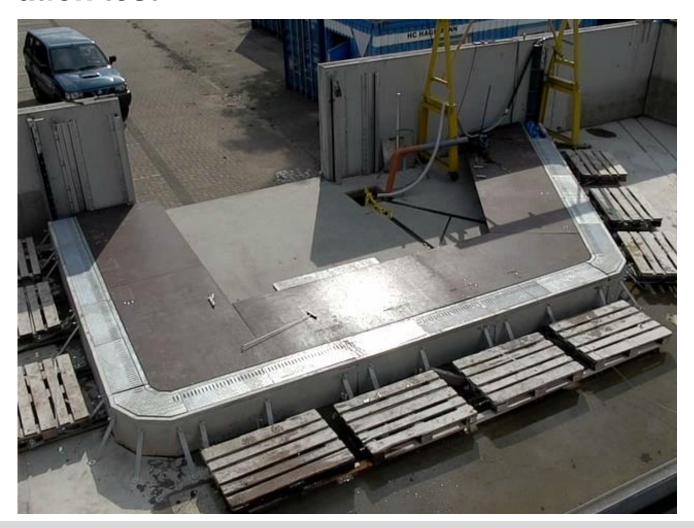
WASSERBAU River and Coastal Engineering

Installation tests

Installation test I

Mobiler Hochwasserschutz Test Prototyp Optimal

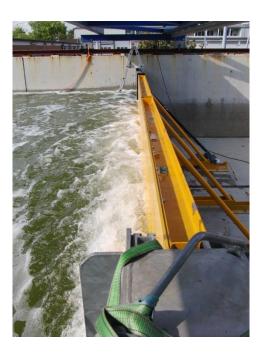
Projektpartner
Leuphana Universität Lüneburg
Hochschule München
Optimal Planen- und Umwelttechnik GmbH, Menden
Karsten Daedler - Spezialverarbeitung von Planstoffen und Geweben, Trittau

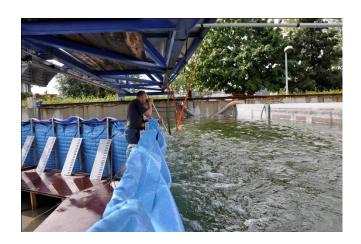

Installation test II

Installation test III

Hydrostatic loads

Determination of leakage rate


Measurement of deformation



Hydrodynamic loads

- Determination of leakage rate
- Determination of deformation
- Measurement of flow velocities

WASSERBAU River and Coastal Engineering

Driftwood tests

- Determination of leakage rate
- Determination of deformation
- Measurement of flow velocities

Test catalogue - TUHH

- Installation tests
 - Experienced teams (manufacturer)
 - TUHH teams (after instruction)
 - Long-term use10x
- Dichtigkeit
 - Hydrostatic loads
 0,25 0,5 0,75 1,0 * Schutzhöhe
 - Hydrodynamic loads
 - Local approach flows
 Longitudinal flows
 up to u=2m/s
 up to u=2m/s
 - Permanent leak tightness24h permanent test
 - Overflow
- Driftwood
 - Selected impulse loads
 225kg / 400kg v_{max}=2,5m/s
- Additional specific tests after consultation with the manufacturer / client
 => goal development of technology

Standardization of tests and certification / approval

Experiences from tests of mobile flood protection constructions at TUHH

- For the defined test conditions. Hence, the test results are not necessarily representative for the product performance under real world conditions.
- Result of tests (especially for termporally installed technologies) are strongly depending on the actual conditions at site (soil characteristics, surface conditions, etc.) and on the installation conditions.
- Additional site specific tests have to be performed for a detailed assessment of the product performance at specific sites.
- For the test results are one base for the assessment of the leakage rate / sealing performance of a product. Criteria for necessary sealing performance are strongly depending on the specific project requirements and on the specific construction / site to be protected.
- Hard pass/fail criteria are necessary for the assessment of the stability, only.

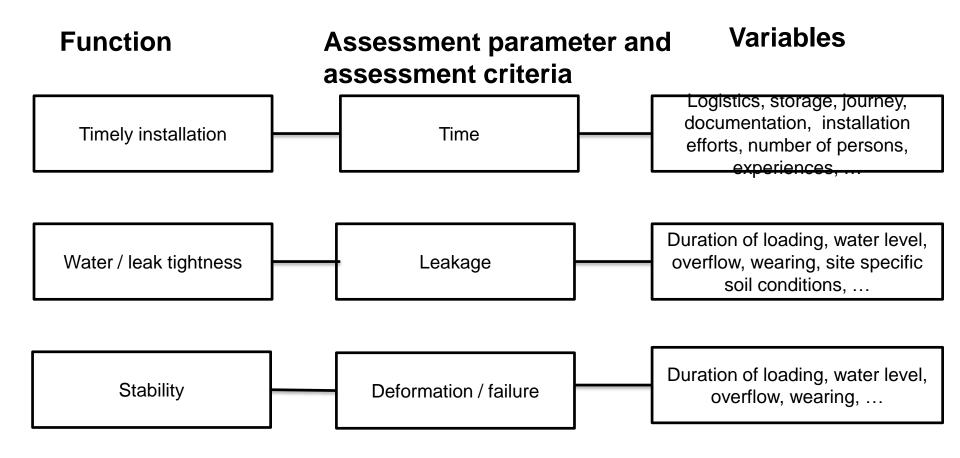
Standardization of tests and certification

What are the requirements of manufacturers and users?

Manufacturer	User (public, private)
Proof of quality and functionality of a product as basis for marketing.	Decision support tool. Basis for insurance against flooding.

Where are we at present?

- Definition of a test procedure
- Definition of assessment parameters
- Definition of assessment criteria



Is this assessment sufficient to fulfil the requirements of the manufacturers and users?

Standardization of tests and certification

Standardization of tests and certification

Example:

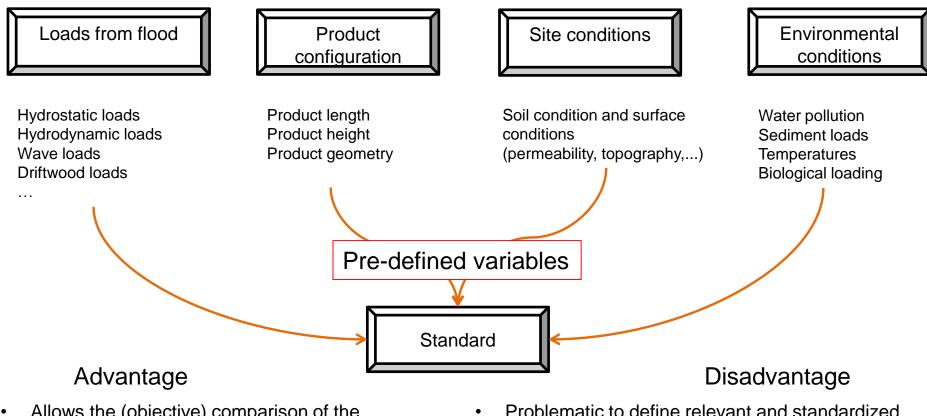
Allowable leakage rates for mobile flood protection walls

FM – Approval 45l/h/m (0,75l/min/m)

British – Standards 40l/h/m (0,67l/min/m)

Are those pass/fail values meaningful?

Idea:

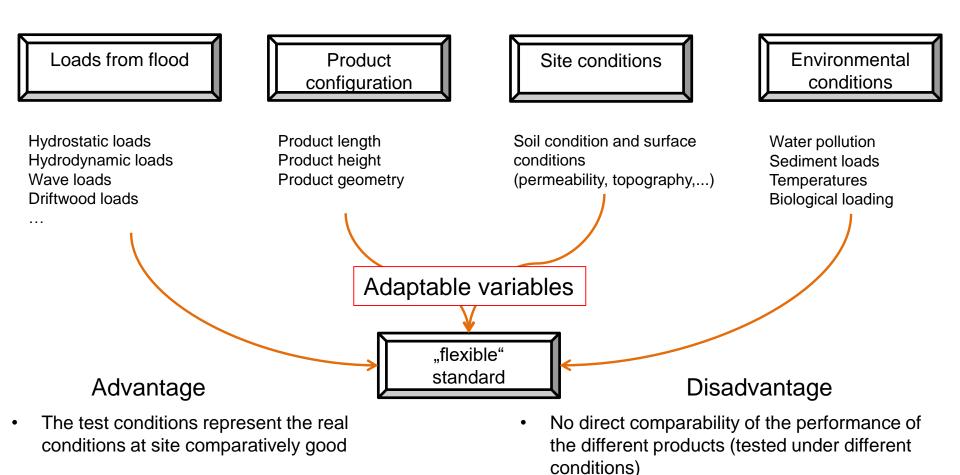

Classification (VDS, Europaverband Hochwasserschutz, etc.)

=> criteria depending on intended use

Standardized procedures

 Allows the (objective) comparison of the performance of different products

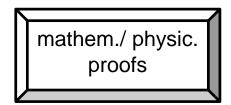
- Problematic to define relevant and standardized conditions for the wide variety of requirements and the wide variety of the products.
- Problematic to transfer the test results for the standardized conditions to the site specific conditions

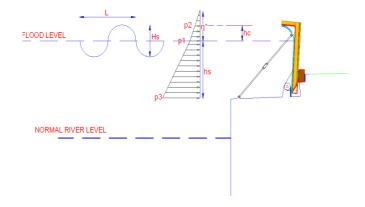


Standardisierte Verfahren

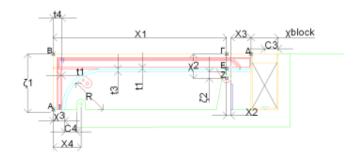
No classification of the products

Wide variety of conditions (see above), which can not be implemented in all hydraulic labs.


2nd Dutch German Workshop 2017


Standardized Test

Physical tests



VDS initiative "certification of mobile flood protection"

Test guideline for mobile flood protection elements

- Definition of requirements and test methods for mobile and temporally stationary elements
 - Leakage rates
 - o classes A / B / C
 - Storage- and transport
 - Volumes and weight
 - Amount of work for installation
 - Duration and complexity (indirect)
 - Proofs / Documentation
 - Stability and structural safety
 - Material
 - System description
 - User manual / users guide
 - Maintenance and repairs

Systematization of (mobile) flood protection

Level 1 Technologies		
Abatement technologies abatement systems	indirect protection / protection of an area / a building	line oriented protection of an area
sealing technologies sealing systems	Sealing of buildings or building openings	direct protection at the buidling
	Level 2 Type	
	mobile	
	fixed / im-mobile	
		Ebene 3 Installation
		aktive => self installing / preventiv installation
		passive => manually installation

Abstract and conclusions

- Mobile flood protection construction are a meaningful addition to classical "im-mobile" flood protection measures and are
- case wise a comparatively cheap, effektive and efficient solution for flood protection tasks.
- A wide variety of concepts and technologies of mobile flood protection measures are available => not all are reliable and some inventors are not respecting the simpliest physical and organizational requirements
- In general, a wide variety of experiences of testing of mobile flood protection measures are available.
- Standardized criteria for the assessment of the applicability of mobile flood protection constructions
 - are widely and frequently required but
 - are comparativel difficult to define.
- A certification of mobile flood protectin systems is desirable:
 - but is only possible in co-operation with "certifiers" (VDS, TÜV, etc.).
 - and needs a combination of hydraulic lab tests and theoretical and / or practical tests.
- Generel concepts for standardized tests and a certification of mobile flood protection systems are at present developed under lead management of VDS

WASSERBAU River and Coastal Engineering

