

TaFF related terminology

The following glossary gives an overview about some terms which are related with the TaFF- projects thematic and explains them. In order to get a better understanding some of the terms were additionally illustrated with pictures.

Glossary of TaFF terminology

Table 1: TaFF terms in alphabetical order

Term	Explanation	Picture if necessary
Bottom Load	Debris in the waterway, which is negatively	
	buoyant. This creates a hidden	
	danger below the surface. (1)	
Boulders	Boulders are small rocks, sand and pebbles which	-
	are transported by water. (2)	
Break Out	Because of deadlocks, spreadings or landings, the	
	water erupts from the flow channel at one point	
	and makes a new way out of the riverbed. (3)	
		Figure 1: Break Out pattern(3)
Capillary	Capillary water is able to climp upwards the	-
water	different soil layers against gravity. This type of	
	water is also able to infiltrate into the wall of	
	buildings. (4)	
Century rain	An extreme event lasting about five minutes,	-
	which occurs once every one hundred years, is	
	described as a century rain. This value is mainly	
	used for the design of drainage systems. Rainfall	
	events can be quite different from region to	
	region. Statistically, the average is about 0,1L/sm ² . (5)	
Climate	Climate change refers to a broad range of global	-
Change	phenomena created predominantly by burning	
	fossil fuels, which add heat-trapping gases to	
	Earth's atmosphere. These phenomena include	
	the increased temperature trends described by	
	global warming, but also encompass changes such	
	as sea level rise; ice mass loss in Greenland,	
	Antarctica, the Arctic and mountain glaciers	
	worldwide; shifts in flower/plant blooming; and	
	extreme weather events. (6)	
Coping	The ability of people, organizations and	-
Capacity	systems, using available skills and resources,	
	to face and manage adverse conditions,	

	emergencies or disasters. (7)	
Damage	Upper limit value of the possible damage as a	-
potential	basis for the assessment of expected damage as a	
	function of the event characteristics, such as	
	intensity, duration, spatial extent etc In this	
	respect, the maximum damage potential	
	represents the greatest possible damage under	
	the worst conceivable but still realistic conditions.	
	(8)	
Deadlock	Closure of the flow channel at natural or artificial	
	bottlenecks by driftwood and debris freight. The	
	consequences can be breakouts of the water, the	
	breaking of the deadlock and flooding. (3)	
		Figure 2: Deadlock pattorn (2)
		rigure 2. Deathout pattern (3)
Debris Cone	Depositing of rubble, stone or earth material. As a	-
	result of a debris deposit, it is deposited along the	
	crest line of the debris cone. Therefore, the slope	
	angle of the debris cone generally decreases along	
	the crest line. (9)	
Debris Flow	A great deal of debris freight is generated by	Art Aller
	processes such as erosion, clogging or sole	
	liquefaction. This can lead to the development of a	
	features are the high solids content and a high	
	flow velocity. Debris flows often occur in wayes	
	(3)	Figure 3: Debris flow pattern (3)
Drain Channel	A Drain Channel is a Straight-line component	
	combination that receives surface water over its	
	entire length and transfers it to a drain. A Drain	
	Channel is a Straight-line component combination	
	that receives surface water over its entire length	
	and transfers it to a drain. (10)	
		Figure 4: Examples for Drain Channels (4)
Drainage	A drainage ditch is an emergency waterway in case	
Ditch	of heavy rainfall. Due to the surface inclination of	
	the soil, the precipitation water collects in a ditch	
	and is thus discharged. (4)	
		Figure 5: Function of a Drainage Ditch
		(4)

		Cherry Charles
		Figure 6: Drainage Ditch in a garden
Eddy.	Unrited to unreal of water flow where the	(4)
Eddy	differential between the current's pressure on the	
	upstream and downstream sides of an obstacle in	
	a channel causes the water behind the obstacle to	
	flow upstream. Serves as an excellent area to rest	
Fracian	or scout. (1)	
Erosion	flushing or linear flushing of soil particles. (11)	-
Flash Flood	Flash Floods are often characterized by deep, fast	-
	flowing water. The risk to people and property is	
	increased by the short time available to respond.	
	So Flash Floods are one of the most devastating	
	Rainfall. However there are also infrastructure-	
	related floodings which occur due to dam breaks,	
	surface water flooding in urban areas or the	
	failure of other structures. (12)	
Flood	A flood occurs often after heavy rainfalls or dam-	-
	sea surge urban sewer or storms. Because of	
	those triggers the amount of water in rivers and	
	lakes rises, passes through its borders and	
	overflows streets and buildings. (13)	
Flood hazard	Maps which are to be drawn up in Germany by the	-
risk mans	for risk assessment in the event of a flood. The	
nok mapo	areas to be covered are those which	
	1be flooded during a flood with a return	
	interval of 200 years or during an extreme event.	
	2be flooded during a flood with a recurrence	
	3are more likely to be flooded in the event of a	
	flood.	
	In addition, information on the extent of flooding,	
	water depth, flow velocities, possible runoff and	
	negative consequences must be included. (Gesetz	
	zur Oranung des Wasserhaushalts [Wasserhaushaltsgesetz	
	- WHG] vom 31. Juli 2009 [BGBl. I S. 2585]	
	/ German Water Resources Act – [WHG] from 31.	

	of July 2009[published in BGBI. S. 2585])	
Flood Wave	Occurs normally because of a dam-break scenario	-
	and can be powerful. (13)	
Fluvial	"Fluvial" is latin and translated as "river". This	-
Processes	means it contains all processes, which are related	
	to water or flowing movements. (2)	
Global	Global warming refers to the long-term warming	-
Warming	of the planet since the early 20th century, and	
	most notably since the late 1970s, due to the	
	increase in fossil fuel emissions since the Industrial	
	Revolution. (6)	
Gravitational	Mass movements include a relocation of	-
Mass	earthmaterial down the slope because of the	
Movements	effect of gravity. The speed depends on the type	
	of mass moving downhill. There are five types of	
	movement: sliding, flowing, falling, drifting and	
	tipping. Those movements are often triggered by	
	heavy rains. (2)	
Gully	Gullies built access into the sewer system and act	-
	as discharge channel for water within surface	
11	sealed areas. (4)	
Hazard	A dangerous phenomenon, substance, human	-
	activity or condition that may cause loss of life,	
	injury or other nearth impacts, property damage,	
	loss of livelihoods and services, social and	
	(7)	
Hoovy Painfall	(7) Heavy Painfall occurs within short periods as a	_
Heavy Kallian	result of very unstable air with a high humidity	_
	After an extreme rainfall event landslides and flash	
	floods can appear. Rain is called "heavy rain"	
	when the precipitation is 20mm per hour or more.	
	(14)	
Infrastructure	An infrastructure provides a fundamentally	-
	necessary service for a society or a system. It can	
	be material, institutional or personnel structures	
	and facilities. Infrastructures are characterized by	
	their features. They are often locally bound,	
	indivisible and usually have a long service life.	
	Interdependencies also occur between the	
	individual sub-areas. (15)	
Landings	With decreasing flow velocity, the entrained	
	debris load is deposited in the flow channel. As a	
	result, the water level rises significantly. (3)	
		Figure 7: Landings pattern(3)
1		

Landslide	Landslides are sliding processes of different kinds. There are mass shifts in the subsurface. This can be seen, among other things, in soil fractures. These mass movements can be of very long (hours, days, years) or very short (seconds, minutes) duration. Landslides mainly occur on slopes with an inclination of 20°-40°. (3; 16)	Figure 8: Landslide pattern (3)
Laminar Flow	Layered downstream flow of the river's main current. The layer in the center just below the surface moves the fastest, while the side and bottom layers are slowed somewhat by friction.	HELICAL FLOW HELICAL FLOW RIGHT RIGH
	(1)	Figure 9: Laminar Flow pattern of a river(1)
Mitigation	The lessening or limitation of the adverse impacts of hazards and related disasters. (7)	-
Mudflow	Mudflow is a very popular term and often used in news media, but there is no technical definition. It is also common to use the word "Mudslide", but mud is not sliding, it is flowing, so this term is misleading and should not be used. The term mudflow is used by news media and the public to describe flows like debris flow, lahar, avalanche, earth flow or mudslide and covers all types of flows. It is a process including gravel, boulders and rocks mixed with water moving downhill. Mudflows are caused by volcanic activity, heavy rainfalls, landslides, earthquakes, snow and ice melt, underground water or break of dams. (17; 18)	-
Orography	Orography deals with the pure surface form of the terrain. The surface structures, such as mountains, can have a decisive influence on the local weather. Thus -vertical up- and downdrafts arise at	
	mountains. This is accompanied by weather conditions such as ascending precipitation and winds blowing. (19; 20)	Figure 10: Winds and precipitation produced by orography (19)
Percolating Water	Percolating water is defined as water gathering in different soil layers. It is possible that the water infiltrates into the wall of buildings and causes damages. (4)	-
Residual Risk	The risk that remains in unmanaged form, even when effective disaster risk reduction measures are in place, and for which emergency response and recovery capacities must be maintained. (7)	-
Resilience	The ability of a system, community or society exposed to hazards to resist, absorb.	-

Retention	accommodate hazard in a tim through the pr essential basic concrete huma to learn from p developing org strategies to b events. (7; 21; A retention ba	to and recover from the effects of a ally and efficient manner, including eservation and restoration of its structures and functions. In a an context, this includes the ability past catastrophic events by ganisational or constructional ecome more resistant to future 22) sin is used to manage big amounts	
Basin	of water occur rainfalls. It can hollow, where	ing because of a storm or heavy look like an artificial lake or a the water stays until it percolates	
	through the so (4)	il until it reaches the groundwater.	Figure 11: Function of a Retention Basin (4)
Risk	The combination	on of probability of occurrence and	-
Rick	A rick accord	ant matrix is the visualized product	Disaster Pick Materia
Assesment	of a risk assess	ment. The risk is presented as a	very high medium high high extreme extreme
Matrix	correlation bet	ween the likelihood of occurrence	
	and the extent	of damage to an event. These two	righ mouth mouth nigh high extreme
	factors are ass basis of predet	essed either subjectively or on the ermined factors. (23; 24)	rare kow kow medium Mudum Much a minimat kow kow medium Much a minimat kow kow medium Much by severe Vulnerability to natural hazard
			Figure 12: Example for Disater Risk Matrix for a natural hazard (25)
Risk	The systematic	approach and practice of managing	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management	The systematic uncertainty to (7)	approach and practice of managing minimize potential harm and loss.	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	approach and practice of managing minimize potential harm and loss. The beginning of a river is called its	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's headwaters can be huge, with	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's headwaters can be huge, with thousands of small streams that	Figure 12: Example for Disater Risk Matrix for a natural hazard (25)
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's headwaters can be huge, with thousands of small streams that flow together, or just a trickle	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -
Risk Management River Terms	The systematic uncertainty to (7) Headwaters:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's headwaters can be huge, with thousands of small streams that flow together, or just a trickle from a lake or pond. (26)	Figure 12: Example for Disater Risk Matrix for a natural hazard (25)
Risk Management River Terms	The systematic uncertainty to (7) Headwaters: Tributary:	c approach and practice of managing minimize potential harm and loss. The beginning of a river is called its headwaters. Even if a river becomes big and powerful, its headwaters often don't start out that way. Some headwaters are springs that come from under the ground. Others are marshy areas fed by mountain snow. A river's headwaters can be huge, with thousands of small streams that flow together, or just a trickle from a lake or pond. (26) A tributary is a river that feeds into	Figure 12: Example for Disater Risk Matrix for a natural hazard (25) -

	Up and	Downstream always points to the	
	Down, Left	end of a river. "Upstream" always	
	and Right:	points to the river's source. As you	
		look downstream, your right hand	
		corresponds to "River Right". Your	
		left hand corresponds to "River	
		Left." (26)	
	River	The shape of a river channel	-
	Channel:	depends on how much water has	
		been flowing in it for how long,	
		over what kinds of soil or rock, and	
		through what vegetation. There	
		are many different kinds of river	
		channels – some are wide and	
		constantly changing, some	
		crisscross like a braid, and others	
		stay in one main channel between	
		steep banks. (26)	
	River Bank:	The land next to the river is called	
		the riverbank. These areas also	
		provide valuable services like	
		protection from erosion during	
		floods. (26)	
	Mouth or	The end of a river is its mouth, or	
	Delta:	delta. At a river's delta, the land	
		flattens out and the water loses	
		speed, spreading into a fan shape.	
		Usually this happens when the	
		river meets an ocean, lake, or	
		wetland. (26)	
Runoff	Run-off pathw	ay management techniques can	-
Management	delay and flatt	en the hydrograph and reduce peak	
	flow locally for	small flood events by intercepting,	
	slowing and fil	tering surface water runoff. They	
	usually work best as a cluster of features working		
	as a network t	hroughout the landscape. (27)	
Sewer	Sewers are par	t of a big system. They are often	-
	placed underg	round. They transport water or	
	sewage, often	from buildings to treatment	
Course:	Hooversities. (4)	top course a disfunction of the course	
Sewer	neavy rains of	is to much water flowing into the	-
DACKTIOW	system. mere	is to much water nowing into the	
	guilys, in Which	the buildin as long as there is no	
		the bullum as long as there is no	
	bo a backwate	r value. It provents the water from	
	be a backwate	r valve. It prevents the water from	
	I HOWING DACK A	nu noouing the building. (4)	

Slope Debris Flow	Mixture of rock, water and earth mass, which flows downhill in a pulpy form. The flow velocities are high and in contrast to the normal debris flow, this type of debris flow occurs in a slope and not in the stream bed. Slope debris flows have a great destructive power and can spread far into flat areas. (3)	Figure 13: Slope Debris Flow pattern (3)
Soil and Land Management	Soil and land management techniques can reduce peak flow by slowing and storing surface water runoff and encouraging infiltration with the soil. (27)	-
Spreading	If a body of water carries more water than the stream channel is able to hold, the body of water will overflow its banks. (3)	Figure 14: Spreading pattern (3)
Surface Sealing	Surface sealing means that it is impossible for water to infiltrate into the ground. This occurs often in cities because of the building development. (4)	-
Susceptibility	Susceptibility generally refers to the likelihood of harm, loss and disruption in an extreme event triggered by a natural hazard. Thus susceptibility describes structural characteristics and framework conditions of a society. (28)	-
Torrent	Torrents are similar to flash floods. They are normally placed in mountain regions and set in a stream. In case of a flood, caused by heavy rainfalls, a huge amount of water is flowing downhill and the sediment transport rate and the speed of transportation rises. A transportation of gravel is also possible. The torrent sometimes changes its flow course (crosses its streambed) and can get dangerous for humans. (29)	-
Vademeceum	The Vademecum gives a general overview of the measures taken by EU Member States as well as at EU level to deal with disasters. Disasters may be due to natural causes, such as earthquakes, landslides, forest fires, floods, snowstorms, tidal waves and/or human activity, such as in the case of accidents involving chemicals, etc. The Vademecum is a source of information for:	-

	- professionals working in the field of civil	
	protection at the national regional and local level	
	- volunteers and non-governmental organisations	
	- interested members of the public	
	link:	
	http://ec.europa.eu/echo/files/civil_protection/va	
	demecum/index.html (30)	
Vulnerability	The characteristics and circumstances of a	
vumerability	community system or asset that make it	_
	suscentible to the damaging effects of a bazard	
Water	The area measured in the horizontal projection	unterirdiankan Einnungenhist
Catchmont	delimited by an above-ground or underground	unteriraiscnes Einzugsgebiet oberirdisches Einzugsgebiet
Aroa	watershed whose water flows to a certain	
Alea	location in general the underground watershed is	Und
	unknown for this reason the above-ground	Uurchlässig
	catchment area is often determined on the basis	Figure 15: Illustration of the
	of natural occurrences (e.g. contour lines) (31)	aboveground and underground
	of hatural occurrences (e.g. contour mies). (51)	
Watershed	The watershed is the hydrological boundary of a	-
	catchment area. It cannot always be deduced from	
	the topographical conditions. Due to the nature of	
	the soil, underground inflows and outflows can be	
	formed. Anthropogenic influences, such as water	
	pipes and drainage systems, must also be taken	
	into considerations. (32)	
Weather	A weather front is defined as a narrow boundary	
Front	zone between air masses of different	
	temperature, humidity and other properties. In	
	this front area there may can be sudden changes	1000
	in air pressure or temperature. Wind convergenz	
	can also occur because of friction. All these factors	
	lead to characteristic changes in cloud formation	
	and weather conditions. (33)	
		Figure 16: Map with different
		Weather Fronts (34)
Weather	Weather warnings are official forecasts of weather	_
Warnings	phenomena that can lead to a danger to public	_
warnings	safety and order. Warnings are always generated	
	on an event-driven basis and distributed in many	
	ways e_{σ} via the Internet These weather	
	warnings are categorized in different levels (21)	
Weather	The individual weather warning levels are listed	
Warning	below:	-
LEVEIS	-Weather warnings are level 1 warnings	
1	weather warnings are level I warnings.	1

These are warnings that prompt recipients to be aware of something coming.	
-Warnings of prominent weather are level 2 warnings: These are warnings that ask the recipient to "Be prepared" - be prepared for something to come, take precautions in case it comes badly.	
-A weather warning is a level 3 warning: These are warnings that prompt recipients to "take action" - "do something, protect yourself". The predicted event makes protection measures necessary, e.g. going to the security of a house.	
-Warnings of extreme storms are level 4 warnings: These are the highest level warnings and require the recipient to take urgent and immediate action to get to safety and protect their property. (34)	

Resources

1. **Phillips, Ken.** *Swiftwater Rescue Manual.* [ed.] National Park Service United States Department of the Interior. Washington D. C. : s.n., 2012. Online availble: http://mra.org/wp-

content/uploads/2016/07/nps-swiftwater-rescue-manual-rev09-23-2012-SMALL.pdf.

2. **Gebhardt, Hans, et al., et al., [ed.].** *Geographie. Physische Geographie und Humangeographie.* Heidelberg : Spinger Spektrum , 2019. ISBN: 978-3-662-58378-4.

3. Schweizerischer Feuerwehrverbad. Vorbereitung und Ausbildung der Feuerwehr und ihrer Partner bei Naturereignissen. *Behelf.* 2014.

4. **Stadtentwässerungsbetriebe Köln AöR.** *Wassersensibel planen und bauen in Köln.* Cologne : Agathos Druck, 2016. Online availble: https://www.steb-

koeln.de/Redaktionell/ABLAGE/Downloads/Broschüren-

Veröffentlichungen/Gebäudeschutz/Leitfaden-Wassersensibel-planen-und-bauen.pdf.

5. **Pieper, Rainer.** Wenn der Regen kommt. *Dachbaumagazin – Unternehmermagazin für Dachdeckerbetriebe.* 2017, 7-8. 2017.

6. **NASA' s Jet Propulsion Laboratory.** [Online] 10 September 2019. [Cited: 16 September 2019.] https://climate.nasa.gov/resources/global-warming-vs-climate-change/.

7. United Nations International Strategy for Disaster Reduction (UNISDR). UNISDR Terminology on Disaster Risk Reduction. Geneva : s.n., 2009. Online available:

https://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf.

8. **DWA-Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.** *Schadensanalysen und Projektbewertung im Hochwasserrisikomanagement.* Hennef : s.n., 2012. Vols. DWA-Themen. T1/2012. ISBN: 978-3-942964-44-9.

9. Lorek, Dietmar Markus Silesius. Wand- und Gratentwicklung seit dem Spätglazial. Ein Beitrag zur Landschaftgeschichte in Graubünden. . Frankfurt/Main : s.n., 2004. Online availble: http://publikationen.ub.uni-frankfurt.de/files/4966/LorekDietmar.pdf .

10. **Deutsches Institut für Normierung e.V.** Drainage channels for vehicular and pedestrian areas - Classification, design and testing requirements, marking and evaluation of conformity; German version EN 1433:2002 + AC:2004 + A1:2005. s.l. : Beuth Verlag GmbH, 2005. DIN EN 1433:2005-09; ICS 93.080.30.

11. **Meyer, Wilhelm and Murawski, Hans.** *Geologisches Wörterbuch.* Berlin : Springer-Verlag GmbH, 2017. ISBN: 978-3-662-54049-7.

12. Sene, Kevin. Flash Floods. Dordrecht : Springer Science+Buisness Media, 2013. ISBN: 978-94-007-5164-4.

13. Fattorelli, Dana und Fontana, Da Ros. *Floods and Landslides*. Berlin : Springer-Verlag GmbH, 1999. ISBN: 978-3-642-63664-6.

14. **Bryant, Edward.** *Natural Hazards.* Second Edition. New York : Cambridge University Press, 2005. ISBN: 978-0-521-53743-8.

15. Wieland, Bernd. Infrastruktur. [ed.] Weert Canzler, Oliver Schöller and Andreas Knie. *Handbuch Verkehrspolitik.* Wiesbaden : VS Verlag für Sozialwissenschaften, 2007.

16. **Bobrowsky, Peter and Highland, Lynn M.** *The Landslide Handbook—A Guide to Understanding Landslides.* [ed.] U.S. Geological Survey. Reston : s.n., 2008. Vol. Circular 1325.

17. **United Nations Department for Humanitairan Affairs.** *Mudflows. Experience and Lessons Learned form the Management of Mayor Disasters.* Geneva : United Nations Publication, 1996. ISBN: 92-1-132020-8.

18. Schneider, Bonnie. Extreme Weather. St. Martins Griffin : Macmillan Science, 2013. 978-0-230-11573-6.

19. Foresti, Loris and Pozdnoukhov, Alexei . Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques. [ed.] Royal Meteoroligal Society.

Tackling consequences of

extreme rainfalls and Flash Floods

METEOROLOGICAL APPLICATIONS. Reading : Wiley Online Library, 2011. Vol. Meteorological Application 19. DOI: 10.1002/met.272.

20. Lux, Ralph. *Modellsimulationen zur Strömungsverstärkung von ororgraphischen Grundstrukturen bei Sturmsituationen*. Karlsruhe : Universitätsverlag Karlsruhe, 2007. Vol. Band 40. ISBN: 978-3-86644-140-8.

21. **Bohle, Hans-Georg and Glade, Thomas.** Vulnerabilitätskonzepte in Sozial- und Naturwissenschaften. [ed.] Carsten Felgentreff and Thomas Glade. *Naturrisiken und Sozialkatastrophen*. Munich : Elsevier GmbH, 2008.

22. Boin, Arjen, Comfort, Louise Kloos and Demchak, Chris C., [ed.]. *Designing Resilience: Prepairing for Extreme Events.* Pittsburgh : University of Pittsburgh Press, 2010. ISBN: 978-0-822-96061-4.

23. **United Nations International Stragtegy for Disaster Risk Reduction (UNISDR).** *National Disaster Risk Assessment.* Geneva : s.n., 2017. Online available:

http://www.unisdr.org/files/52828_nationaldisasterriskassessmentwiagu.pdf.

24. **Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK).** *Methode für die Risikoanalyse im Bevölkerungsschutz.* Bonn : MedienHaus Plump GmbH , 2010. ISBN: 978-3-939347-28-6 .

25. **Federal Ministry for Economic Cooperation and Development (GMZ).** *Disaster Risk Management. Approach and Contributions of German Development Cooperation.* Bonn : Sprintout

Digitaldruck GmbH, 2015. Online availble:

http://www.bmz.de/en/publications/type_of_publication/information_flyer/information_brochures/ Materialie245a_disaster_risk_managment.pdf.

26. **American Rivers, Inc.** What makes a River? . [Online] 2017. [Cited: 17 September 2019.] https://www.americanrivers.org/rivers/discover-your-river/river-anatomy/.

27. Addy, Stephen, et al., et al. *Working with Natural Processes*. Environmental Agency. Bristol : s.n., 2018. Project number: SC150005.

28. Welle, Thorsten, et al., et al. WorldRiskIndex 2012: Concept, updating and results. [ed.] Alliance Development Works. *WorldRiskReport 2012.* Berlin : könitzers druck + medien, 2012.

29. *INTERPRAEVENT 2008 - Conference Proceedings*. **Internationale Forschungsgesellschaft INTERPRAEVENT.** Dornbirn : Kreiner Druck, 2008. ISBN: 978-3-901164-10-1.

30. **European Union.** Vademeceum. [Online] 16. October 2017. [Zitat vom: 17. September 2019.] https://ec.europa.eu/echo/files/civil_protection/vademecum/index.html.

31. Lecher, Kurt, Lühr, Hans-Peter and Zanke, Ulrich C. E., [ed.]. *Taschenbuch der Wasserwirtschaft. Grundlagen-Maßnahmen-Planungen.* Wiesbaden : Springer-Verlag GmbH, 2015. ISBN: 978-3-52812-580-6.

32. **Vischer, Dr. Daniel und Huber, Dr. Andreas.** *Wasserbau. Hydrologische Grundlagen, Elemante des Wasserbaus, Nutz- und Schutzbauten an Binnengewässern.* Berlin : Springer Verlag GmbH, 1982. ISBN: 978-3-540-11700-1.

33. Deutscher Wetterdienst. Wetterlexikon. *Front.* [Online] [Cited: 17 September 2019.]
https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=100784&lv3=100898.
34. —. Wetterlexikon. *Wetterwarnungen.* [Online] [Cited: 17 September 2019.]

https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?nn=103346&lv2=102936&lv3=6230 66.

